Convert the isometric drawing into a foundation drawing

Top

Convert the isometric drawing into a foundation drawing

Representations of Three Dimensional Figures

3-D Figure Isometric Drawing Orthographic Drawing Foundation Drawing

TERM:	DEFINITION	Sketch
Net	A two dimensional drawing of a three dimensional object	
Face	The polygons that form a three dimensional object.	
Base	Two congruent, parallel faces	
Base edges	The segments that form the bases.	
Lateral edges	The segments that connect the bases. They are part of the lateral faces.	
Vertex	The corners of the three dimensional object.	

Three-Dimensional Figures

TERM
A prism is formed by two parallel congruent polygonal faces called bases connected by faces that are parallelograms.

EXAMPLE

A cylinder is formed by two parallel congruent circular bases and a curved surface that connects the bases.

A pyramid is formed by a polygonal base and triangular faces that meet at a common vertex.

A cone is formed by a circular base and a curved surface that connects the base to a vertex.

Formulas

Diagonal of a Rectangular Prism: $d=\sqrt{l^{2}+w^{2}+h^{2}}$
Distance Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
Midpoint Formula: $\quad M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$
Euler's Polyhedron Formula: $V-E+F=2$

Prisms:

- Lateral Area: $L A=P h \quad$ or add areas of all lateral faces
- Total Area: $T A=P h+2 B$ or add areas of all faces
- Volume: $V=B h$

Cylinders:

- Lateral Area: $L A=2 \pi r h$
- Total Area: $T A=2 \pi r h+2 \pi r^{2}$
- Volume: $V=B h$ or $V=\pi r^{2} h$

