Spheres

V

A great circle is a circle on the surface of a sphere with the same center and radius as the sphere.

$$SA = 4\pi r^{2}$$

$$V = \frac{4}{3}\pi r^{3}$$

$$V = \frac{4}{3}\pi r^{3}$$

$$V = \frac{4}{3}\pi r^{3}$$

$$V = \frac{4}{3}\pi r^{3}$$

Euclidean	Non-Euclidean Geometry	
Geometry		
Geometry on a plane	Geometry on a sphere	Geometry on a
	(Spherical)	concave disk
		(Hyperbolic)
Line = straight line	Line = great circle on a sphere	
Parallel lines exist	Parallel "lines" do not exist	
Interior angles of	Interior angles of spherical	
triangles sum to	triangles sum to more than	
180°	180°	
Use in our everyday	Use to travel the globe	
life		
Two lines can	Two "lines" can intersect at	
intersect at exactly	two points	
one point		

The area of spherical $\triangle ABC$ on a sphere with radius r is $A = \frac{\pi r^2}{180^\circ} (m \angle A + m \angle B + m \angle C - 180^\circ).$

Solids of Revolution

The given regions will rotate around the x-axis or y-axis.

If the region is not touching the axis of rotation, there will be a hole in the 3-dimensional figure created by rotating the region.

Rectangular region \xrightarrow{rotate} Cylinder Triangular region \xrightarrow{rotate} Cone Semi-circular region \xrightarrow{rotate} Sphere