Unit 17 Fact Sheet

Topic \#1: Circle Basics

Term	Definition
Circle	A set of points that are a fixed distance from a given point, the center.
Chord	A line segment with its endpoints on the circle.
Secant	A line that intersects a circle at two points and extends into the exterior of the circle.
Tangent	A line that intersects a circle at one point.
Central Angle	An angle whose vertex is at the center.
Arc	A part of the circumference of a circle. Its measure is equal to the measure of the central angle.
Semicircle	An arc with a measure of 180°. Named with three letters.
Minor Arc	An arc whose measure is $<180^{\circ}$. Named with two letters. Major Arc
An arc whose measure is $>180^{\circ}$. Named with three letters.	
Man	

Topic \#2: Arc Length and Sector Area

Arc Length $\frac{\text { arc length }}{\text { circumference }}=\frac{x^{*}}{360^{\circ}}$

Area of Sector $\frac{\text { sector area }}{\text { area of circle }}=\frac{x^{0}}{360^{\circ}}$

Topic \#3: Arcs and Chords

In the same or congruent circles

Congruent arcs have congruent chords.

$$
\text { If } \overparen{A B} \cong \widehat{C D} \text {, then } \overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}
$$

Congruent chords are equidistant from the center.

$$
\text { If } \overline{\mathrm{AB}} \cong \overline{\mathrm{CD}} \text {, then } \overline{\mathrm{PS}} \cong \overline{\mathrm{PT}}
$$

Diameter Perpendicular to a chord

A diameter (or radius) that is perpendicular to a chord bisects the chord and its arcs.

If $\overline{\mathrm{AB}} \perp \overline{\mathrm{CD}}$, then $\overline{\mathrm{CE}} \cong \overline{\mathrm{ED}}, \overparen{\mathrm{CB}} \cong \overparen{B D}$, and $\overparen{\mathrm{CA}} \cong \overparen{\mathrm{DA}}$

Topic \#4: Tangents

Radius and Tangent Meet

> If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency.

Tangents drawn from a common point are \cong.

$\overline{\mathrm{CD}} \cong \overline{\mathrm{DE}}$

