Unit 17 Fact Sheet

Topic #1: Circle Basics

Term	Definition
Circle	A set of points that are a fixed distance from a given point, the center.
Chord	A line segment with its endpoints on the circle.
Secant	A line that intersects a circle at two points and extends into the exterior of the circle.
Tangent	A line that intersects a circle at one point.
Central Angle	An angle whose vertex is at the center.
Arc	A part of the circumference of a circle. Its measure is equal to the measure of the central angle.
Semicircle	An arc with a measure of 180°. Named with three letters.
Minor Arc	An arc whose measure is < 180°. Named with two letters.
Major Arc	An arc whose measure is > 180°. Named with three letters.

Topic #2: Arc Length and Sector Area

In the same or congruent circles

Congruent arcs have congruent chords.

If
$$\overrightarrow{AB} \cong \overrightarrow{CD}$$
, then $\overrightarrow{AB} \cong \overrightarrow{CD}$

Congruent chords are equidistant from the center.

If $\overline{AB} \cong \overline{CD}$, then $\overline{PS} \cong \overline{PT}$

Diameter Perpendicular to a chord

A diameter (or radius) that is perpendicular to a chord bisects the chord and its arcs.

If
$$\overline{AB} \perp \overline{CD}$$
, then $\overline{CE} \cong \overline{ED}$, $\overline{CB} \cong \overline{BD}$, and $\overline{CA} \cong \overline{DA}$

Radius and Tangent Meet

If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency.

Tangents drawn from a common point are \cong .

 $\overline{CD}\cong\overline{DE}$