
Unit 4 Facts Parallel Lines Proofs

Corresponding Angles Theorem	If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.
Alternate Interior Angles Theorem	If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent.
Alternate Exterior Angles Theorem	If two parallel lines are cut by a transversal, then the pairs of alternate exterior angles are congruent.
Same-Side Interior Angles Theorem	If two parallel lines are cut by a transversal, then the pairs of same- side interior angles are supplementary.
Same-Side Exterior Angles Theorem	If two parallel lines are cut by a transversal, then the pairs of same- side exterior angles are supplementary.

Stand Alone Angle Relationships:

- <u>Vertical Angles</u> are always congruent.
- Linear Pair are always supplementary

Angle Relationships based on Parallel Lines

Angles Relationship	Туре
$\angle 1\cong \angle 5, \angle 3\cong \angle 7$	Corresponding
${{{\casesent } {\casesent 2} \cong {{\casesent 6}}, {{\casesent 4} \cong {{\casesent 2}}}}$	
$egin{array}{c} egin{array}{c} egin{array}{c} A \cong egin{array}{c} A \oplus egin{array}$	Alternate Interior
$\angle 1\cong \angle 8, \angle 2\cong \angle 7$	Alternate Exterior
∠3&∠5 are supplements	Same Side Interior
∠4&∠6 are supplements	
∠1&∠7 are supplements	Same Side EXterior
$\angle 2\& \angle 8$ are supplements	

Converse of Corresponding Angles Theorem	If the pairs of corresponding angles are congruent, then the two lines cut by a transversal are parallel.
Converse of Alternate Interior Angles Theorem	If the pairs of alternate interior angles are congruent, then the two lines cut by a transversal are parallel.
Converse of Alternate Exterior Angles Theorem	If the pairs of alternate exterior angles are congruent, then the two lines cut by a transversal are parallel.
Converse of Same-Side Interior Angles Theorem	If the pairs of same side interior angles are supplementary, then the two lines cut by a transversal are parallel.
Converse of Same-Side Exterior Angles Theorem	If the pairs of same side exterior angles are supplementary, then the two lines cut by a transversal are parallel.

<u>Slopes</u>

- Parallel lines have the same slope.
- Perpendicular lines have slopes that are opposite reciprocals. If you multiplied them together you would get -1.

Other theorems to use in proofs:

- Vertical Angles Congruence Thm: Vertical angles are congruent.
- Right Angles Congruence Thm: All right angles are congruent.
- Linear Pair Thm: If two angles form a linear pair, then they are supplementary.
- **Congruent Complements Thm:** If two angles are complementary to the same angle or congruent angles, then the angles are congruent.
- **Congruent Supplements Thm:** If two angles are supplementary to the same angle or congruent angles, then the angles are congruent.