Unit \#5 Fact Sheet

Triangle Basics

Triangles by Sides

- Equilateral
- Isosceles
- Scalene

Triangles by Angles

- Acute
-Right
- Obtuse
- Equiangular

Triangle Theorems

- Triangle Sum Theorem: The sum of the measures of the angles of a triangle is 180°.
- Exterior Angle Theorem: The measure of an exterior angle of a triangle is equal to the sum of the measures of the two remote interior angles.

- Isosceles Δ Theorem: If two sides of a Δ are \cong, then the \angle 's opposite those sides are \cong.

$$
\text { If } \overline{\mathrm{AB}} \cong \overline{\mathrm{BC}} \text {, then } \angle \mathrm{A} \cong \angle \mathrm{C}
$$

- Triangle Inequality Theorem:

Any side of a triangle is always shorter than the sum of the other two sides.

| Triangle Inequality Theorem | |
| ---: | :--- | ---: |
| $7+8$ | >9 |
| $8+9$ | >7 |
| $9+7$ | >8 |

Other Triangle Facts

- The largest side is opposite the largest angle, and the smallest side is opposite the smallest angle.

SPECIAL SEGMENTS IN TRIANGLES

- Angle Bisector:
- Altitude:

- Median:

- Perpendicular Bisector:

Points of Concurrency

Segment Name	Definition	Point of Concurrency	
Median	A line joining a vertex to the midpoint of the opposite side	C Centroid	
A Angle Bisector	A line which cuts an angle into two equal halves	Incenter	
\mathbf{P}	Perpendicular line through each side's midpoint Perpendicular Bisector	Circumcenter A	A perpendicular line from each vertex of the triangle to the opposite side
Altitude	Orthocenter		

