Unit #5 Fact Sheet

Triangle Basics

Triangles by Sides

- Equilateral
- Isosceles
- Scalene

Triangles by Angles

- Acute
- Right
- Obtuse
- Equiangular

Triangle Theorems

- Triangle Sum Theorem: The sum of the measures of the angles of a triangle is 180°.
- Exterior Angle Theorem: The measure of an exterior angle of a triangle is equal to the sum of the measures of the two remote interior angles.

• Isosceles \triangle Theorem: If two sides of a \triangle are \cong , then the \angle 's opposite those sides are \cong .

If $\overline{AB} \cong \overline{BC}$, then $\angle A \cong \angle C$

• Triangle Inequality Theorem:

Any side of a triangle is always shorter than the sum of the other two sides.

Other Triangle Facts

• The largest side is opposite the *largest angle*, and the smallest side is opposite the *smallest angle*.

SPECIAL SEGMENTS IN TRIANGLES

• Angle Bisector:

• Altitude:

• Median:

• Perpendicular Bisector:

Points of Concurrency

Segment Name	Definition	Point of Concurrency	Sketch of Point
M Median	A line joining a vertex to the midpoint of the opposite side	C Centroid	***
A Angle Bisector	A line which cuts an angle into two equal halves	Incenter	
P Perpendicular Bisector	Perpendicular line through each side's midpoint	C Circumcenter	
A Altitude	A perpendicular line from each vertex of the triangle to the opposite side	O Orthocenter	