Topic #1

Similar Polygons: Two polygons are similar if their vertices can be paired so that

- 1) corresponding angles are congruent
- 2) corresponding sides are proportional

Similarity Ratio: The ratio of corresponding sides based on the similarity statement (small:big or big:small)

Perimeter Ratio: Will always equal the similarity ratio

Scale Factor: What you multiply to create a new figure

Triangles are similar by.....

<u>AA Similarity:</u> If two angles of one triangle are congruent to two angles of another triangle, then Δ 's are ~

 $\widehat{\frown}$

SSS Similarity: If the measure of the corresponding sides of two triangles are proportional, then Δ 's are ~

SAS Similarity: If the measure of two sides of a triangle are proportional to the measure of two corresponding sides of another triangle, and the included angles are congruent, then Δ 's are ~

Triangle Proportionality Theorem

TRIANGLE MIDSEGMENT THEOREM: If D and E are midpoints then, 2(DE) = BC

Parallel Proportional Segment Theorem

THEOREM: If three or more parallel lines cut off congruent segments on one transversal, then they cut off congruent segment on every transversal.

Topic #3 Triangle Angle Bisector Theorem

TRIANGLE ANGLE BISECTOR THEOREM Angle bisectors in a triangle divide the opposite side into segments whose ratio is proportional to the adjacent sides.

Side Side =	= Adjacent Piece Adjacent Piece
AB	BD
\overline{AC} =	$=\overline{DC}$

Topic #4 Right Triangle Similarity

If the altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are similar to the original triangle and to each other.

In a right triangle, the altitude from the right angle to the hypotenuse divides the hypotenuse into two segments.

• Altitude as the Geometric Mean

 $\frac{Part\ 1}{ALTITUDE} = \frac{ALTITUDE}{Part\ 2}$

• Leg as the Geometric Mean

Hypotenuse	LEG
LEG	[–] Part