Unit \#7 Similarity Facts

Topic \#1

Similar Polygons: Two polygons are similar if their vertices can be paired so that

1) corresponding angles are congruent
2) corresponding sides are proportional

Similarity Ratio: The ratio of corresponding sides based on the similarity statement (small:big or big:small)

Perimeter Ratio: Will always equal the similarity ratio
Scale Factor: What you multiply to create a new figure

Triangles are similar by........

AA Similarity: If two angles of one triangle are congruent to two angles of another triangle, then Δ 's are ~

SSS Similarity: If the measure of the corresponding sides of two triangles are proportional, then Δ 's are ~

SAS Similarity: If the measure of two sides of a triangle are proportional to the measure of two corresponding sides of another triangle, and the included angles are congruent, then Δ 's are ~

Topic \#2

Triangle Proportionality Theorem
DE || BC

TRIANGLE MIDSEGMENT THEOREM:
If D and E are midpoints then, 2(DE) = BC

Parallel Proportional Segment Theorem

$\ell\|m\| n$

$\frac{A B}{B C}=\frac{X Y}{Y Z}$

THEOREM: If three or more parallel lines cut off congruent segments on one transversal, then they cut off congruent segment on every transversal.

Topic \#3 Triangle Angle Bisector Theorem

TRIANGLE ANGLE BISECTOR THEOREM Angle bisectors in a triangle divide the opposite side into segments whose ratio is proportional to the adjacent sides.
$\frac{\text { Side }}{\text { Side }}=\frac{\text { Adjacent Piece }}{\text { Adjacent Piece }}$
$\frac{A B}{A C}=\frac{B D}{D C}$

Topic \#4 Right Triangle Similarity

If the altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are similar to the original triangle and to each other.

$\triangle C B D \sim \triangle A B C$ $\triangle A C D \sim \triangle A B C$ $\triangle C B D \sim A C D$

In a right triangle, the altitude from the right angle to the hypotenuse divides the hypotenuse into two segments.

- Altitude as the Geometric Mean

$$
\frac{\text { Part } 1}{\text { ALTITUDE }}=\frac{\text { ALTITUDE }}{\text { Part } 2}
$$

- Leg as the Geometric Mean

$$
\frac{\text { Hypotenuse }}{L E G}=\frac{L E G}{\text { Part }}
$$

