Unit 9 Fact Sheet

Topic \#1: Law of Sines

The Law of Sines

For any $\triangle A B C$ with side lengths a, b, and c that are opposite angles A, B, and C, respectively,

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

*Be sure to find the smallest angle $1^{\text {st! }}$

Heron's Formula (for finding area):
$\mathrm{A}=\sqrt{s(s-a)(s-b)(s-c)}$

Topic \#2: Law of Cosines

The Law of Cosines

For any $\triangle A B C$ with side lengths a, b, and c that are opposite angles A, B, and C, respectively,

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

Topic \#3: Vectors

Component form	Magnitude	Direction
Component Form Lists the horizontal and vertical change from the initial point to the terminal point Initial point $P(2,5)$ Terminal point $Q(8,4)$	Magnitude The length of a vector, written as $\|\overrightarrow{A B}\|$ or $\|\vec{V}\|$ Use the distance formula to find the magnitude of a vector. $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	Direction The direction of a vector is measured in degrees. $\begin{aligned} & \tan B=\frac{6}{5} \\ & \mathrm{~m} \angle B=\tan ^{-1}\left(\frac{6}{5}\right) \approx 50^{\circ} \end{aligned}$

