Unit 9 Fact Sheet

Topic #1: Law of Sines

*Be sure to find the smallest angle 1st!

Heron's Formula (for finding area): A = $\sqrt{s(s-a)(s-b)(s-c)}$

Topic #2: Law of Cosines

The Law of Cosine	s
For any $\triangle ABC$ with side lengths <i>a</i> , <i>b</i> , and <i>c</i> that are opposite angles <i>A</i> , <i>B</i> , and <i>C</i> , respectively, $a^2 = b^2 + c^2 - 2bc \cos A$, $b^2 = a^2 + c^2 - 2ac \cos B$, $c^2 = a^2 + b^2 - 2ab \cos C$.	

Component form	Magnitude	Direction
Component Form Lists the horizontal and vertical change from the initial point to the terminal point Initial point $P(2, 5)$ Terminal point $Q(8, 4)$	Magnitude The length of a vector, written as $ \overline{AB} $ or $ \overrightarrow{v} $ Use the distance formula to find the magnitude of a vector. $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	Direction The direction of a vector is measured in degrees. $ \begin{array}{r} $